Abstract
Fine-particulate pollution is a major public health concern in China. Accurate assessment of the population exposed to PM2.5 requires high-resolution pollution and population information. This paper assesses China’s potential population exposure to PM2.5, maps its spatiotemporal variability, and simulates the effects of the recent air pollution control policy. We relate satellite-based Aerosol Optical Depth (AOD) retrievals to ground-based PM2.5 observations. We employ block cokriging (BCK) to improve the spatial interpolation of PM2.5 distribution. We use the subdistrict level population data to estimate and map the potential population exposure to PM2.5 pollution in China at the subdistrict level, the smallest administrative unit with public demographic information. During 8 April 2013 and 7 April 2014, China’s population-weighted annual average PM2.5 concentration was nearly 7 times the annual average level suggested by the World Health Organization (WHO). About 1322 million people, or 98.6% of the total population, were exposed to PM2.5 at levels above WHO’s daily guideline for longer than half a year. If China can achieve its Action Plan on Prevention and Control of Air Pollution targets by 2017, the population exposed to PM2.5 above China’s daily standard for longer than half a year will be reduced by 85%.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献