Texture Features of 18F-Fluorodeoxyglucose Positron Emission Tomography for Predicting Programmed Death-Ligand-1 Levels in Non-Small Cell Lung Cancer

Author:

Norikane Takashi1,Ishimura Mariko1,Mitamura Katsuya1,Yamamoto Yuka1ORCID,Arai-Okuda Hanae1,Manabe Yuri1,Murao Mitsumasa1,Morita Riku1,Obata Takafumi1,Tanaka Kenichi1,Murota Makiko1,Kanaji Nobuhiro2,Nishiyama Yoshihiro1

Affiliation:

1. Department of Radiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan

2. Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan

Abstract

Background: Identifying programmed death-ligand-1 (PD-L1) expression is crucial for optimizing treatment strategies involving immune checkpoint inhibitors. However, the role of intratumoral metabolic heterogeneity specifically derived from 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images in predicting PD-L1 expression in patients with newly diagnosed non-small cell lung cancer (NSCLC) remains unexplored. Here, we investigated the association between FDG PET texture features and PD-L1 expression by retrospectively analyzing the data of patients newly diagnosed with NSCLC who underwent FDG PET/CT scans and PD-L1 immunohistochemical staining before treatment. Methods: Patients were categorized based on their tumor proportion scores (TPSs) into negative-, low-, and high-PD-L1 expression groups. We computed the maximum standardized uptake value and 31 texture features for the primary tumor from PET images and compared differences in parameters among the groups. Results: Of the 83 patients, 12, 45, and 26 were assigned to the negative-, low-, and high-PD-L1 expression groups, respectively. Six specific texture features (low gray-level run emphasis, short-run low gray-level emphasis, long-run high gray-level emphasis, low gray-level zone emphasis, high gray-level zone emphasis, and short-zone low gray-level emphasis) helped distinguish among all possible combinations. Conclusions: Our findings revealed that FDG PET texture features are potential imaging biomarkers for predicting PD-L1 expression in patients newly diagnosed with NSCLC.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3