An Integrated Duranton and Overman Index and Local Duranton and Overman Index Framework for Industrial Spatial Agglomeration Pattern Analysis

Author:

Huang Yupu1ORCID,Zhuo Li12ORCID,Cao Jingjing3

Affiliation:

1. Guangdong Provincial Engineering Research Center for Public Security and Disaster, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

3. College of Computer Sciences, Guangdong Polytechnic Normal University, Guangzhou 510665, China

Abstract

Accurately measuring industrial spatial agglomeration patterns is crucial for promoting regional economic development. However, few studies have considered both agglomeration degrees and cluster locations of industries. Moreover, the traditional multi-scale cluster location mining (MCLM) method still has limitations in terms of accuracy, parameter setting, calculation efficiency, etc. This study proposes a new framework for analyzing industrial spatial agglomeration patterns, which uses the Duranton and Overman (DO) index for estimating agglomeration degrees and a newly developed local DO (LDO) index for mining cluster locations. The MCLM-LDO method was proposed by incorporating the LDO index into the MCLM method, and it was validated via comparisons with three baseline methods based on two synthetic datasets. The results proved that the MCLM-LDO method can achieve accuracies of 0.945 and 1 with computational times of 0.15 s and 0.11 s on two datasets, which are superior to existing MCLM methods. The proposed framework was further applied to analyze the spatial agglomeration patterns of the industry of computer, communication, and other electronic equipment manufacturing in Guangdong Province, China. The results showed that the framework gives a more holistic perspective of spatial agglomeration patterns, which can serve as more meaningful references for industrial sustainable development.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3