Physical and Mathematical Modelling of Mass Transfer in Ladles due to Bottom Gas Stirring: A Review

Author:

Conejo Alberto N.

Abstract

Steelmaking involves high-temperature processing. At high temperatures mass transport is usually the rate limiting step. In steelmaking there are several mass transport phenomena occurring simultaneously such as melting and dissolution of additions, decarburization, refining (De-P and De-S), etc. In ladle metallurgy, refining is one of the most important operations. To improve the rate of mass transfer bottom gas injection is applied. In the past, most relationships between the mass transfer coefficient (mtc) and gas injection have been associated with stirring energy as the dominant variable. The current review analyzes a broad range of physical and mathematical modeling investigations to expose that a large number of variables contribute to define the final value of the mtc. Since bottom gas injection attempts to improve mixing phenomena in the whole slag/steel system, our current knowledge shows limitations to improve mixing conditions in both phases simultaneously. Nevertheless, some variables can be optimized to reach a better performance in metallurgical ladles. In addition to this, the review also provides a state of the art on liquid–liquid mass transfer and suggests the current challenges in this field.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3