MOSQUITO EDGE: An Edge-Intelligent Real-Time Mosquito Threat Prediction Using an IoT-Enabled Hardware System

Author:

Polineni ShyamORCID,Shastri OmORCID,Bagchi AviORCID,Gnanakumar GovindORCID,Rasamsetti Sujay,Sundaravadivel PrabhaORCID

Abstract

Species distribution models (SDMs) that use climate variables to make binary predictions are effective tools for niche prediction in current and future climate scenarios. In this study, a Hutchinson hypervolume is defined with temperature, humidity, air pressure, precipitation, and cloud cover climate vectors collected from the National Oceanic and Atmospheric Administration (NOAA) that were matched to mosquito presence and absence points extracted from NASA’s citizen science platform called GLOBE Observer and the National Ecological Observatory Network. An 86% accurate Random Forest model that operates on binary classification was created to predict mosquito threat. Given a location and date input, the model produces a threat level based on the number of decision trees that vote for a presence label. The feature importance chart and regression show a positive, linear correlation between humidity and mosquito threat and between temperature and mosquito threat below a threshold of 28 °C. In accordance with the statistical analysis and ecological wisdom, high threat clusters in warm, humid regions and low threat clusters in cold, dry regions were found. With the model running on the cloud and within ArcGIS Dashboard, accurate and granular real-time threat level predictions can be made at any latitude and longitude. A device leveraging Global Positioning System (GPS) smartphone technology and the Internet of Things (IoT) to collect and analyze data on the edge was developed. The data from the edge device along with its respective date and location collected are automatically inputted into the aforementioned Random Forest model to provide users with a real-time threat level prediction. This inexpensive hardware can be used in developing countries that are threatened by vector-borne diseases or in remote areas without cloud connectivity. Such devices can be linked with citizen science mosquito data platforms to build training datasets for machine learning based SDMs.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3