Author:
Chen Shiyao,Xu Shuguang,Ge Chenyu,Hu Changwei
Abstract
In the present work, the reaction pathways and the origin of catalytic activity for the production of lactic acid from glycerol catalyzed by an iridium–heterocyclic carbene (Iridium-NHC) complex at 383.15 K were investigated by DFT study at the M06-D3/6-311++G (d, p)//SDD level. Compared to the noncatalytic reaction pathway, the energy barrier sharply decreased from 75.2 kcal mol−1 to 16.8 kcal mol−1 with the introduction of the iridium–NHC complex. The catalytic reaction pathway catalyzed by the iridium–NHC complex with a coordinated hydroxide included two stages: the dehydrogenation of glycerol to 2,3-dihydroxypropanal, and the subsequent isomerization to lactic acid. Two reaction pathways, including dehydrogenation in terminal and that in C2-H, were studied. It was found that the formation of dihydroxyacetone from the H-removal in C2-H was more favorable, which might have been due to the lower energy of LUMO, whereas dihydroxyacetone could be easily transferred to 2,3-dihydroxypropanal. The analyses of electrostatic potential (ESP), hardness, and f- Fukui function also confirmed that the iridium–NHC complex acted as a hydrogen anion receptor and nucleophilic reaction center to highly promote the conversion of glycerol to lactic acid.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献