Smart Charging for Electric Car-Sharing Fleets Based on Charging Duration Forecasting and Planning

Author:

Lo Franco FrancescoORCID,Cirimele VincenzoORCID,Ricco MattiaORCID,Monteiro VitorORCID,Afonso Joao L.ORCID,Grandi GabrieleORCID

Abstract

Electric car-sharing (ECS) is an increasingly popular service in many European cities. The management of an ECS fleet is more complex than its thermal engine counterpart due to the longer ”refueling“ time and the limited autonomy of the vehicles. To ensure adequate autonomy, the ECS provider needs high-capacity charging hubs located in urban areas where available peak power is often limited by the system power rating. Lastly, electric vehicle (EV) charging is typically entrusted to operators who retrieve discharged EVs in the city and connect them to the charging hub. The timing of the whole charging process may strongly differ among the vehicles due to their different states of charge on arrival at the hub. This makes it difficult to plan the charging events and leads to non-optimal exploitation of charging points. This paper provides a smart charging (SC) method that aims to support the ECS operators’ activity by optimizing the charging points’ utilization. The proposed SC promotes charging duration management by differently allocating powers among vehicles as a function of their state of charge and the desired end-of-charge time. The proposed method has been evaluated by considering a real case study. The results showed the ability to decrease charging points downtime by 71.5% on average with better exploitation of the available contracted power and an increase of 18.8% in the average number of EVs processed per day.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation-based Analysis of Car-sharing Electrification in Schleswig-Holstein, Germany;Proceedings of the 7th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies;2024-07-08

2. Step-by-Step Design of a LLC Resonant Converter for EV Fast Charging Applications;2024 8th International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE);2024-07-05

3. Assessing the Nationwide Benefits of Vehicle–Grid Integration during Distribution Network Planning and Power System Dispatching;World Electric Vehicle Journal;2024-03-27

4. Legislations and grid codes of vehicle electrification into power grids;Vehicle Electrification in Modern Power Grids;2024

5. Analysis of real time charging Datasets: A Case Study of Slovenian village;2023 International Conference on Future Energy Solutions (FES);2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3