Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential

Author:

Manzar Nazia,Kashyap Abhijeet ShankarORCID,Goutam Ravi ShankarORCID,Rajawat Mahendra Vikram SinghORCID,Sharma Pawan Kumar,Sharma Sushil Kumar,Singh Harsh Vardhan

Abstract

Trichoderma is an important biocontrol agent for managing plant diseases. Trichoderma species are members of the fungal genus hyphomycetes, which is widely distributed in soil. It can function as a biocontrol agent as well as a growth promoter. Trichoderma species are now frequently used as biological control agents (BCAs) to combat a wide range of plant diseases. Major plant diseases have been successfully managed due to their application. Trichoderma spp. is being extensively researched in order to enhance its effectiveness as a top biocontrol agent. The activation of numerous regulatory mechanisms is the major factor in Trichoderma ability to manage plant diseases. Trichoderma-based biocontrol methods include nutrient competition, mycoparasitism, the synthesis of antibiotic and hydrolytic enzymes, and induced plant resistance. Trichoderma species may synthesize a variety of secondary metabolites that can successfully inhibit the activity of numerous plant diseases. GPCRs (G protein-coupled receptors) are membrane-bound receptors that sense and transmit environmental inputs that affect fungal secondary metabolism. Related intracellular signalling pathways also play a role in this process. Secondary metabolites produced by Trichoderma can activate disease-fighting mechanisms within plants and protect against pathogens. β- Glucuronidase (GUS), green fluorescent protein (gfp), hygromycin B phosphotransferase (hygB), and producing genes are examples of exogenous markers that could be used to identify and track specific Trichoderma isolates in agro-ecosystems. More than sixty percent of the biofungicides now on the market are derived from Trichoderma species. These fungi protect plants from harmful plant diseases by developing resistance. Additionally, they can solubilize plant nutrients to boost plant growth and bioremediate environmental contaminants through mechanisms, including mycoparasitism and antibiosis. Enzymes produced by the genus Trichoderma are frequently used in industry. This review article intends to provide an overview update (from 1975 to 2022) of the Trichoderma biocontrol fungi, as well as information on key secondary metabolites, genes, and interactions with plant diseases.

Funder

National Bureau of Agriculturally Important Microorganisms

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3