Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas

Author:

Das Anup,Babu SubhashORCID,Singh RaghavendraORCID,Kumar Sanjeev,Rathore Sanjay SinghORCID,Singh Vinod K.,Datta MrinmoyORCID,Yadav Sanjay K.ORCID,Wani Owais AliORCID,Yadav Devideen

Abstract

Food security and soil sustainability are the prime challenges to researchers and policy planners across the globe. The task is much more daunting in the fragile ecosystem of the Eastern Himalayan region of India. Soil disturbance from conventional tillage reduces soil productivity and is not sustainable and environmentally friendly. Conservation tillage is regarded as the best crop production practice in the Indian Himalayas, where soil is very easily erodible. Zero tillage alone encourages the growth of different species of weed flora in fragile hill ecosystems. However, live mulching of a pulse crop under zero tillage may be a very beneficial practice, as it aids several soil quality benefits and promotes root proliferation with good crop harvest. Hence, a field investigation was carried out for 3 consecutive years to assess the impact of live mulch-based conservation tillage on soil properties and productivity of summer maize. Five tillage practices, viz. no-till (NT), NT and cowpea coculture live mulch (CLM), minimum tillage (MT), MT+CLM, and conventional tillage (CT), were assessed in a randomized complete block design with three replications. Results revealed that continuous adoption of MT+CLM had the lowest bulk density (1.31 and 1.37 Mg m−3) and maximum water holding capacity (48.49% and 43.1%) and moisture content (22.4% and 25%) at 0–10 and 10–20 cm soil layers, respectively, after 3 years. The infiltration rate (2.35 mm min−1) was also maximum under MT+CLM, followed by NT+CLM. MT+LMC had 13.8 and 27.15% higher available nitrogen and phosphorus, respectively, than CT at 0–10 cm soil depth. The MT+CLM gave a significantly higher maize grain yield (2.63 Mg ha−1), followed by NT+CLM (2.63 Mg ha−1) over the others. A cowpea green pod yield of 1.65 Mg ha−1 was also obtained from the legume coculture. Thus, the study found that live mulch of cowpea under MT/NT improved soil quality and subsequently led to greater productivity of summer maize in the Himalayan region of India.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3