Template-Assisted Co-Ni Nanowire Arrays

Author:

Vidu ,Predescu ,Matei ,Berbecaru ,Pantilimon ,Dragan ,Predescu

Abstract

A comparison was performed between Co-Ni thin films and template-assisted nanowires arrays obtained by electrochemical co-deposition. To reduce the effects of anomalous deposition and increase the Ni content in the deposit, an electrolyte with three times more Ni than Co in atomic ratio was chosen. Electrochemical deposition was performed at constant potentials chosen in the range from E = −0.8 to −1.2 V vs. Ag/AgCl. Cyclic voltammetry, chronoamperometry, and charge stripping techniques were used to characterize and compare the electrochemical behavior of Co-Ni films and nanowires. Morphological and compositional characterization was performed by scanning electron microscopy (SEM/EDAX) to assess the influence of the deposition potential on the growth of film and nanowires. A comprehensive analysis of the deposit growth rates for thin films and nanowires is presented taking into consideration the hydrogen evolution and anomalous deposition. The comparative study of the composition of film and nanowires obtained at different deposition potentials has shown that deposition of nanowires with a film-like composition takes place at more positive potential than thin film.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3