Using In Situ Polymerization to Increase Puncture Resistance and Induce Reversible Formability in Silk Membranes

Author:

Emonson Nicholas S.,Eyckens Daniel J.ORCID,Allardyce Benjamin J.ORCID,Hendlmeier Andreas,Stanfield Melissa K.,Soulsby Lachlan C.,Stojcevski Filip,Henderson Luke C.

Abstract

Silk fibroin is an excellent biopolymer for application in a variety of areas, such as textiles, medicine, composites and as a novel material for additive manufacturing. In this work, silk membranes were surface modified by in situ polymerization of aqueous acrylic acid, initiated by the reduction of various aryldiazonium salts with vitamin C. Treatment times of 20 min gave membranes which possessed increased tensile strength, tensile modulus, and showed significant increased resistance to needle puncture (+131%), relative to ‘untreated’ standards. Most interestingly, the treated silk membranes were able to be reversibly formed into various shapes via the hydration and plasticizing of the surface bound poly(acrylic acid), by simply steaming the modified membranes. These membranes and their unique properties have potential applications in advanced textiles, and as medical materials.

Funder

Australian Research Council

Office of Naval Research Global

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3