Geometallurgical Characterisation with Portable FTIR: Application to Sediment-Hosted Cu-Co Ores

Author:

Dehaine QuentinORCID,Tijsseling Laurens T.,Rollinson Gavyn K.,Buxton Mike W. N.ORCID,Glass Hylke J.ORCID

Abstract

Cobalt (Co) mine production primarily originates from the sediment-hosted copper (Cu) deposits of the Democratic Republic of Congo (DRC). These deposits usually consist of three ore zones with a supergene oxide ore blanket overlying a transition zone which grades into a sulphide zone at depth. Each of these zones display a mineral assemblage with varying gangue mineralogy and, most importantly, a distinct state of oxidation of the mineralisation. This has direct implications for Cu and Co extraction during mineral processing as it dictates which processing method is to be used (i.e., leaching vs. flotation) and affects the performance of these. To optimise resource efficiency, reduce technical risks and environmental impacts, comprehensive understanding of variation of ore mineralogy and texture in the deposit is essential. By defining geometallurgical ore types according to their inferred metallurgical behaviour, this information can serve to classify the resources and improve resource management. To obtain insight into the spatial distribution of mineral grades, it is necessary to develop techniques that have the potential to measure rapidly and, preferably, within the mine at relatively low-cost. In this study, the application of portable Fourier transformed infrared (FTIR) spectroscopy is investigated to measure the mineralogy of drill core samples. A set of samples from a sediment-hosted Cu-Co deposit in DRC was selected to test this approach. Results were validated using automated mineralogy (QEMSCAN). Prediction of gangue and target mineral grades from the FTIR spectra was achieved through partial least squares regression (PLS-R) combined with competitive adaptive reweighted sampling (CARS). It is shown that the modal mineralogy obtained from FTIR can be used to classify the ore according to type of mineralisation and gangue mineralogy into geometallurgical ore types. This classification supports selection of a suitable processing route and is likely to affect the overall process performance.

Funder

Natural Environment Research Council

Geological Survey of Finland

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3