Petrographic Record and Conditions of Expansive Hydration of Anhydrite in the Recent Weathering Zone at the Abandoned Dingwall Gypsum Quarry, Nova Scotia, Canada

Author:

Jarzyna AdrianORCID,Bąbel Maciej,Ługowski Damian,Vladi Firouz

Abstract

In the Dingwall gypsum quarry in Nova Scotia, Canada, operating in 1933–1955, the bedrock anhydrite deposits of the Carboniferous Windsor Group have been uncovered from beneath the secondary gypsum beds of the extracted raw material. The anhydrite has been subjected to weathering undergoing hydration (gypsification), transforming into secondary gypsum due to contact with water of meteoric derivation. The ongoing gypsification is associated with a volume increase and deformation of the quarry bottom. The surface layer of the rocks is locally split from the substrate and raised, forming spectacular hydration relief. It shows numerous domes, ridges and tepee structures with empty internal chambers, some of which represent unique hydration caves (swelling caves, Quellungshöhlen). The petrographic structure of the weathering zone has been revealed by macro- and microscopic observations. It was recognized that gypsification commonly starts from a developing network of tiny fractures penetrating massive anhydrite. The gypsification advances from the fractures towards the interior of the anhydrite rocks, which are subdivided into blocks or nodules similar to corestones. Characteristic zones can be recognized at the contact of the anhydrite and the secondary gypsum: (1) massive and/or microporous anhydrite, (2) anhydrite penetrated by tiny gypsum veinlets separating the disturbed crystals and their fragments (commonly along cleavage planes), (3) gypsum with scattered anhydrite relics, and (4) secondary gypsum. The secondary gypsum crystals grow both by replacement and displacement, and also as cement. Displacive growth, evidenced by abundant deformation of the fragmented anhydrite crystals, is the direct cause of the volume increase. Crystallization pressure exerted by gypsum growth is thought to be the main factor generating volume increase and, consequently, also the formation of new fractures allowing water access to “fresh” massive anhydrite and thus accelerating its further hydration. The expansive hydration is taking place within temperature range from 0 to ~30 °C in which the solubility of gypsum is lower than that of anhydrite. In such conditions, dissolving anhydrite yields a solution supersaturated with gypsum and the dissolution of anhydrite is simultaneous with in situ replacive gypsum crystallization. Accompanying displacive growth leads to volume increase in the poorly confined environment of the weathering zone that is susceptible to upward expansion.

Funder

Ministry of Higher Education and Science

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference180 articles.

1. Brines and Evaporites;Sonnenfeld,1984

2. Geochemical and Engineering Aspects of Anhydrite/Gypsum Phase Transitions

3. Anhydrite-Gypsum Problem of Blaine Formation, Oklahoma

4. Economic geology and petrology of gypsum and anhydrite in Blaine County;Ham;Okla. Geol. Surv. Bull.,1962

5. The Petrology of Secondary Gypsum Rocks: A Review

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3