Three-Dimensional Numerical Method for Simulating Large-Scale Free Water Surface by Massive Parallel Computing on a GPU

Author:

Peng Yongqin,Diao Wei,Zhang Xujin,Zhang Chunze,Yang Shuqing

Abstract

Water wave dynamics and its engineering application have always been a key issue in the field of hydraulics, and effective and efficient numerical methods need to be proposed to perform three-dimensional (3-D) simulation of large-scale water fluctuation in engineering practice. A single-phase free-surface lattice Boltzmann method (SPFS-LB method) is coupled with a large-eddy simulation approach for simulating large-scale free water surface flows, and the simulation is accelerated on a GPU (graphic processing unit). The coupling model is used to simulate the evolution process of dam-break wave after complete and partial dam-break. The formation mechanism of horizontal and vertical vortices in water after partial dam-break and the advance and evolution process of dam-break flow on non-contour riverbed are analyzed. The method has been verified to be reasonable and can obtain a more accurate time curve of water level fluctuation. Applying this method to practical arch dams, discharge coefficients consistent with empirical formulas can be obtained by comparison and analysis, and the surface flow phenomena (such as tongue diffusion, surface fragmentation, and surface fusion) can be well simulated by this method. In addition, based on the key technology of parallel computing on a GPU, the implementation of the SPFS-LB model on a GPU unit achieves tens of millions of lattice updates per second, which is over fifty times higher than that on a single CPU chip. It is proved that the proposed method for large-scale water fluctuations can be used to study practical engineering problems. The mathematical model method realizes the efficient and accurate simulation of practical physical problems.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference24 articles.

1. Nonlinear Water Waves Generated by Submarine and Aerial Landslides

2. Method to guarantee accuracy of 3-D CFD simulation of water level in surge chamber;Cai;Wuhan Univ. J. (Eng. Sci. Ed.),2016

3. Experimental parametric study and design of Piano Key Weirs

4. Numerical simulation of flood inundation processes by 2D shallow water equations

5. Two-dimensional numerical simulation on spur dike circumfluence and local scour hole;Pan;J. Sichuan Univ. (Eng. Sci. Ed.),2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3