An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products

Author:

Feng Jiaojiao,Wang Weizhen,Li Jing

Abstract

Solar energy is one of the most widely used renewable energy sources in the world and its development and utilization are being integrated into people’s lives. Therefore, accurate solar radiation data are of great significance for site-selection of photovoltaic (PV) power generation, design of solar furnaces and energy-efficient buildings. Practically, it is challenging to get accurate solar radiation data because of scarce and uneven distribution of ground-based observation sites throughout the country. Many artificial neural network (ANN) estimation models are therefore developed to estimate solar radiation, but the existing ANN models are mostly based on conventional meteorological data; clouds, aerosols, and water vapor are rarely considered because of a lack of instrumental observations at the conventional meteorological stations. Based on clouds, aerosols, and precipitable water-vapor data from Moderate Resolution Imaging Spectroradiometer (MODIS), along with conventional meteorological data, back-propagation (BP) neural network method was developed in this work with Levenberg-Marquardt (LM) algorithm (referred to as LM-BP) to simulate monthly-mean daily global solar radiation (M-GSR). Comparisons were carried out among three M-GSR estimates, including the one presented in this study, the multiple linear regression (MLR) model, and remotely-sensed radiation products by Cloud and the Earth’s radiation energy system (CERES). The validation results indicate that the accuracy of the ANN model is better than that of the MLR model and CERES radiation products, with a root mean squared error (RMSE) of 1.34 MJ·m−2 (ANN), 2.46 MJ·m−2 (MLR), 2.11 MJ·m−2 (CERES), respectively. Finally, according to the established ANN-based method, the M-GSR of 36 conventional meteorological stations for 12 months was estimated in 2012 in the study area. Solar radiation data based on the LM-BP method of this study can provide some reference for the utilization of solar and heat energy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3