Could an Optimized Joint Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Piperacillin-Tazobactam Be a Valuable Innovative Approach for Maximizing the Effectiveness of Monotherapy Even in the Treatment of Critically Ill Patients with Documented Extended-Spectrum Beta-Lactamase-Producing Enterobacterales Bloodstream Infections and/or Ventilator-Associated Pneumonia?

Author:

Gatti Milo12ORCID,Rinaldi Matteo13ORCID,Tonetti Tommaso14ORCID,Siniscalchi Antonio5,Viale Pierluigi13,Pea Federico12ORCID

Affiliation:

1. Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy

2. Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy

3. Infectious Disease Unit, Department for integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy

4. Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

5. Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

Abstract

(1) Background: Piperacillin-tazobactam represents the first-line option for treating infections caused by full- or multi-susceptible Enterobacterales and/or Pseudomonas aeruginosa in critically ill patients. Several studies reported that attaining aggressive pharmacokinetic/pharmacodynamic (PK/PD) targets with beta-lactams is associated with an improved microbiological/clinical outcome. We aimed to assess the relationship between the joint PK/PD target attainment of continuous infusion (CI) piperacillin-tazobactam and the microbiological/clinical outcome of documented Gram-negative bloodstream infections (BSI) and/or ventilator-associated pneumonia (VAP) of critically ill patients treated with CI piperacillin-tazobactam monotherapy. (2) Methods: Critically ill patients admitted to the general and post-transplant intensive care unit in the period July 2021–September 2023 treated with CI piperacillin-tazobactam monotherapy optimized by means of a real-time therapeutic drug monitoring (TDM)-guided expert clinical pharmacological advice (ECPA) program for documented Gram-negative BSIs and/or VAP were retrospectively retrieved. Steady-state plasma concentrations (Css) of piperacillin and of tazobactam were measured, and the free fractions (f) were calculated according to respective plasma protein binding. The joint PK/PD target was defined as optimal whenever both the piperacillin fCss/MIC ratio was >4 and the tazobactam fCss/target concentration (CT) ratio was > 1 (quasi-optimal or suboptimal whenever only one or none of the two weas achieved, respectively). Multivariate logistic regression analysis was performed for testing variables potentially associated with microbiological outcome. (3) Results: Overall, 43 critically ill patients (median age 69 years; male 58.1%; median SOFA score at baseline 8) treated with CI piperacillin-tazobactam monotherapy were included. Optimal joint PK/PD target was attained in 36 cases (83.7%). At multivariate analysis, optimal attaining of joint PK/PD target was protective against microbiological failure (OR 0.03; 95%CI 0.003–0.27; p = 0.002), whereas quasi-optimal/suboptimal emerged as the only independent predictor of microbiological failure (OR 37.2; 95%CI 3.66–377.86; p = 0.002). (4) Conclusion: Optimized joint PK/PD target attainment of CI piperacillin-tazobactam could represent a valuable strategy for maximizing microbiological outcome in critically ill patients with documented Gram-negative BSI and/or VAP, even when sustained by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales. In this scenario, implementing a real-time TDM-guided ECPA program may be helpful in preventing failure in attaining optimal joint PK/PD targets among critically ill patients. Larger prospective studies are warranted to confirm our findings.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3