In Vivo-Acquired Resistance to Daptomycin during Methicillin-Resistant Staphylococcus aureus Bacteremia

Author:

Boutet-Dubois Adeline1,Magnan Chloé1ORCID,Lienard Alexi2,Pouget Cassandra1ORCID,Bouchet Flavien3ORCID,Marchandin Hélène4ORCID,Larcher Romaric5ORCID,Lavigne Jean-Philippe1ORCID,Pantel Alix1ORCID

Affiliation:

1. VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France

2. Laboratory of Medical Biology, CH Bassin de Thau, 34207 Sète, France

3. Department of Internal Medicine-Infectiology, CH Bassin de Thau, 34207 Sète, France

4. HydroSciences Montpellier, Department of Microbiology and Hospital Hygiene, University of Montpellier, CNRS, IRD, CHU Nîmes, 30029 Nîmes, France

5. Department of Infectious Diseases, CHU Nîmes, 30029 Nîmes, France

Abstract

Daptomycin (DAP) represents an interesting alternative to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. Different mechanisms of DAP resistance have been described; however, in vivo-acquired resistance is uncharacterized. This study described the phenotypic and genotypic evolution of MRSA strains that became resistant to DAP in two unrelated patients with bacteremia under DAP treatment, in two hospitals in the South of France. DAP MICs were determined using broth microdilution method on the pairs of isogenic (DAP-S/DAP-R) S. aureus isolated from bloodstream cultures. Whole genome sequencing was carried out using Illumina MiSeq Sequencing system. The two cases revealed DAP-R acquisition by MRSA strains within three weeks in patients treated by DAP. The isolates belonged to the widespread ST5 (patient A) and ST8 (patient B) lineages and were of spa-type t777 and t622, respectively. SNP analysis comparing each DAP-S/DAP-R pair confirmed that the isolates were isogenic. The causative mutations were identified in MprF (Multiple peptide resistance Factor) protein: L826F (Patient A) and S295L (Patient B), and in Cls protein: R228H (Patient B). These proteins encoded both proteins of the lipid biosynthetic enzymes. The resistance to DAP is particularly poorly described whereas DAP is highly prescribed to treat MRSA. Our study highlights the non-systematic cross-resistance between DAP and glycopeptides and the importance of monitoring DAP MIC in persistent MRSA bacteremia.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3