Specific Antimicrobial Activities Revealed by Comparative Evaluation of Selected Gemmotherapy Extracts

Author:

Héjja Melinda12,Mihok Emőke23,Alaya Amina23,Jolji Maria12,György Éva4ORCID,Meszaros Noemi5,Turcus Violeta56,Oláh Neli Kinga78,Máthé Endre25

Affiliation:

1. Doctoral School of Nutrition and Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary

2. Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary

3. Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary

4. Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Libertății sq. 1., 530104 Miercurea Ciuc, Romania

5. Department of life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, L. Rebreanu Str. 86, 310414 Arad, Romania

6. CE-MONT Mountain Economy Center, Costin C. Kirițescu National Institute of Economic Research, Romanian Academy, Petreni Str. 49, 725700 Suceava, Romania

7. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Vasile Goldis, Western University of Arad, L. Rebreanu Str. 86, 310414 Arad, Romania

8. PlantExtrakt Ltd., No. 46, 407059 Cluj, Romania

Abstract

Nowadays, unprecedented health challenges are urging novel solutions to address antimicrobial resistance as multidrug-resistant strains of bacteria, yeasts and moulds are emerging. Such microorganisms can cause food and feed spoilage, food poisoning and even more severe diseases, resulting in human death. In order to overcome this phenomenon, it is essential to identify novel antimicrobials that are naturally occurring, biologically effective and increasingly safe for human use. The development of gemmotherapy extracts (GTEs) using plant parts such as buds and young shoots has emerged as a novel approach to treat/prevent human conditions due to their associated antidiabetic, anti-inflammatory and/or antimicrobial properties that all require careful evaluations. Seven GTEs obtained from plant species like the olive (Olea europaea L.), almond (Prunus amygdalus L.), black mulberry (Morus nigra L.), walnut (Juglans regia L.), blackberry (Rubus fruticosus L.), blackcurrant (Ribes nigrum L.) and bilberry (Vaccinium myrtillus L.) were tested for their antimicrobial efficiency via agar diffusion and microbroth dilution methods. The antimicrobial activity was assessed for eight bacterial (Bacillus cereus, Staphylococcus aureus, Salmonella enterica subsp. enterica, Proteus vulgaris, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Listeria monocytogenes), five moulds (Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, Penicillium citrinum, Penicillium expansum) and one yeast strain (Saccharomyces cerevisiae). The agar diffusion method revealed the blackberry GTE as the most effective since it inhibited the growth of three bacterial, four moulds and one yeast species, having considered the total number of affected microorganism species. Next to the blackberry, the olive GTE appeared to be the second most efficient, suppressing five bacterial strains but no moulds or yeasts. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for each GTE and the microorganisms tested. Noticeably, the olive GTE appeared to feature the strongest bacteriostatic and bactericidal outcome, displaying specificity for S. aureus, E. faecalis and L. monocytogenes. The other GTEs, such as blueberry, walnut, black mulberry and almond (the list indicates relative strength), were more effective at suppressing microbial growth than inducing microbial death. However, some species specificities were also evident, while the blackcurrant GTE had no significant antimicrobial activity. Having seen the antimicrobial properties of the analysed GTEs, especially the olive and black mulberry GTEs, these could be envisioned as potential antimicrobials that might enhance antibiotic therapies efficiency, while the blackberry GTE would act as an antifungal agent. Some of the GTE mixtures analysed have shown interesting antimicrobial synergies, and all the antimicrobial effects observed argue for extending these studies to include pathological microorganisms.

Funder

ÚNKP-23-3 new national excellence program of the Ministry for Culture and Innovation Hungary from the source of the National Research, Development and Innovation Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3