Analysis of Cellular Damage Resulting from Exposure of Bacteria to Graphene Oxide and Hybrids Using Fourier Transform Infrared Spectroscopy

Author:

Liauw Christopher M.1,Vaidya Misha1,Slate Anthony J.2ORCID,Hickey Niall A.1,Ryder Steven1,Martínez-Periñán Emiliano3ORCID,McBain Andrew J.4ORCID,Banks Craig E.5ORCID,Whitehead Kathryn A.1ORCID

Affiliation:

1. Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK

2. Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

3. Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain

4. School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK

5. Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK

Abstract

With the increase in antimicrobial resistance, there is an urgent need to find new antimicrobials. Four particulate antimicrobial compounds, graphite (G), graphene oxide (GO), silver–graphene oxide (Ag-GO) and zinc oxide–graphene oxide (ZnO-GO) were tested against Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The antimicrobial effects on the cellular ultrastructure were determined using Fourier transform infrared spectroscopy (FTIR), and selected FTIR spectral metrics correlated with cell damage and death arising from exposure to the GO hybrids. Ag-GO caused the most severe damage to the cellular ultrastructure, whilst GO caused intermediate damage. Graphite exposure caused unexpectedly high levels of damage to E. coli, whereas ZnO-GO exposure led to relatively low levels of damage. The Gram-negative bacteria demonstrated a stronger correlation between FTIR metrics, indicated by the perturbation index and the minimal bactericidal concentration (MBC). The blue shift of the combined ester carbonyl and amide I band was stronger for the Gram-negative varieties. FTIR metrics tended to provide a better assessment of cell damage based on correlation with cellular imaging and indicated that damage to the lipopolysaccharide, peptidoglycan and phospholipid bilayers had occurred. Further investigations into the cell damage caused by the GO-based materials will allow the development of this type of carbon-based multimode antimicrobials.

Funder

Manchester Metropolitan University

The University of Manchester Health Research Accelerator

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3