Time-Kill Analysis of Canine Skin Pathogens: A Comparison of Pradofloxacin and Marbofloxacin

Author:

Azzariti Stefano1ORCID,Mead Andrew1,Toutain Pierre-Louis12,Bond Ross3,Pelligand Ludovic13ORCID

Affiliation:

1. Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK

2. INTHERES, Université de Toulouse, INRAE, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles-BP 87614, CEDEX 03, 31076 Toulouse, France

3. Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK

Abstract

Time-kill curves (TKCs) are more informative compared with the use of minimum inhibitory concentration (MIC) as they allow the capture of bacterial growth and the development of drug killing rates over time, which allows to compute key pharmacodynamic (PD) parameters. Our study aimed, using a semi-mechanistic mathematical model, to estimate the best pharmacokinetic/pharmacodynamic (PK/PD) indices (ƒAUC/MIC or %ƒT > MIC) for the prediction of clinical efficacy of veterinary FQs in Staphylococcus pseudintermedius, Staphylococcus aureus, and Escherichia coli collected from canine pyoderma cases with a focus on the comparison between marbofloxacin and pradofloxacin. Eight TCKs for each bacterial species (4 susceptible and 4 resistant) were analysed in duplicate. The best PK/PD index was ƒAUC24h/MIC in both staphylococci and E. coli. For staphylococci, values of 25–40 h were necessary to achieve a bactericidal effect, whereas the calculated values (25–35 h) for E. coli were lower than those predicting a positive clinical outcome (100–120 h) in murine models. Pradofloxacin showed a higher potency (lower EC50) in comparison with marbofloxacin. However, no difference in terms of a maximal possible pharmacological killing rate (Emax) was observed. Taking into account in vivo exposure at the recommended dosage regimen (3 and 2 mg/kg for pradofloxacin and marbofloxacin, respectively), the overall killing rates (Kdrug) computed were also similar in most instances.

Funder

the Veterinary Medicine Directorate

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference52 articles.

1. EUCAST (2023, July 01). European Committee on Antimicrobial Susceptibility Testing. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf.

2. Determination of minimum inhibitory concentrations;Andrews;J. Antimicrob. Chemother.,2001

3. MIC-based dose adjustment: Facts and fables;Mouton;J. Antimicrob. Chemother.,2018

4. Jacobs, M., Grégoire, N., Couet, W., and Bulitta, J.B. (2016). Distinguishing antimicrobial models with different resistance mechanisms via population pharmacodynamic modeling. PLoS Comput. Biol., 12.

5. The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal;Toutain;J. Vet. Pharmacol. Ther.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3