In Vitro Selection of High-Level Beta-Lactam Resistance in Methicillin-Susceptible Staphylococcus aureus

Author:

Gostev VladimirORCID,Kalinogorskaya Olga,Ivanova Ksenia,Kalisnikova Ekaterina,Lazareva Irina,Starkova Polina,Sidorenko SergeyORCID

Abstract

Selective pressure of beta-lactams is thought to be responsible for mutation selection in methicillin-susceptible Staphylococcus aureus (MSSA). We used next-generation sequencing to compare the genomes of beta-lactamase-positive (SA0707) and -negative (SA0937) MSSA isolates with their derivatives obtained after selection with oxacillin, ceftaroline, or meropenem. Selection with oxacillin and ceftaroline caused a rapid and significant (6–8 times) increase in the minimum inhibitory concentration (MICs) of oxacillin, penicillin, amoxicillin/clavulanate, and ceftaroline against the derivatives of both isolates, associated with growth impairment. Selection with meropenem caused a limited increase in the MICs of all beta-lactams against both isolates. During the initial stages of selection (after 5–15 passages), mutations were detected only in some reads, which indicated the heterogeneity of the population; however, during the later stages, either the population reversed to the wild type or fixation of the mutation was observed in the entire population. Selection with different beta-lactams caused diverse mutational events, but common mutations were detected in gdpP, all penicillin-binding proteins, cell wall regulators (vraST, graR), and deletions in the promoter region of pbp4. Therefore, the disk diffusion test with cefoxitin does not reveal resistance associated with these mechanisms in some cases, which can lead to the failure of beta-lactam therapy.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3