Detection and Level Evaluation of Antibodies Specific to Environmental Bacteriophage I11mO19 and Related Coliphages in Non-Immunized Human Sera

Author:

Brzozowska Ewa1ORCID,Lipiński Tomasz2,Korzeniowska-Kowal Agnieszka1ORCID,Filik Karolina1ORCID,Górski Andrzej3ORCID,Gamian Andrzej1ORCID

Affiliation:

1. Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland

2. Bioengineering Research Group, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland

3. Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland

Abstract

Bacteriophages (phages) are viruses infecting bacteria. They are widely present in the environment, food, and normal microflora. The human microbiome is a mutually interdependent network of bacteria, bacteriophages, and human cells. The stability of these tri-kingdom interactions may be essential for maintaining immunologic and metabolic health. Phages, as with each other’s antigens, may evoke an immune response during a human’s lifetime and induce specific antibody generation. In this manuscript, we labeled these antibodies as naturally generated. Naturally generated antibodies may be one of the most important factors limiting the efficacy of phage therapy. Herein, we attempted to determine the physiological level of these antibodies specific to a population bacteriophage named I11mO19 in human sera, using an ELISA-based assay. First, we purified the phage particles and assessed the immunoreactivity of phage proteins. Then, affinity chromatography was performed on columns with immobilized phage proteins to obtain a fraction of human polyclonal anti-phage antibodies. These antibodies were used as a reference to elaborate an immunoenzymatic test that was used to determine the level of natural anti-phage antibodies. We estimated the average level of anti-I11mO19 phage antibodies at 190 µg per one milliliter of human serum. However, immunoblotting revealed that cross-reactivity occurs between some proteins of I11mO19 and two other coliphages: T4 and ΦK1E. The antigens probably share common epitopes, suggesting that the determined level of anti-I11mO19 phage might be overestimated and reflects a group of antibodies reactive to a broad range of other E. coli phages. Anti-I11mO19 antibodies did not react with Pseudomonas bacteriophage F8, confirming specificity to the coliphage group. In this work, we wanted to show whether it is possible to determine the presence and level of anti-phage antibodies in nontargeted-immunized sera, using an immunoenzymatic assay. The conclusion is that it is possible, and specific antibodies can be determined. However, the specificity refers to a broader coliphage group of phages, not only the single phage strain.

Funder

A. Gorski

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3