Emergence of Rarely Reported Extensively Drug-Resistant Salmonella Enterica Serovar Paratyphi B among Patients in East China

Author:

Peng Jiefu1ORCID,Feng Jingchao23ORCID,Ji Hong1,Kong Xiaoxiao1,Hong Jie1ORCID,Zhu Liguo1,Qian Huimin1

Affiliation:

1. NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China

2. School of Public Health, Xiamen University, Xiamen 361102, China

3. Vanke School of Public Health, Tsinghua University, Beijing 100084, China

Abstract

Background: In recent years, global concern over increasing multidrug resistance (MDR) among various Salmonella serotypes has grown significantly. However, reports on MDR Salmonella Paratyphi B remain scarce, let alone the extensively drug-resistant (XDR) strains. Methods: In this retrospective study, we investigated the isolates of Salmonella Paratyphi B in Jiangsu Province over the past decade and carried out antimicrobial susceptibility tests, then the strains were sequenced and bioinformatics analyses were performed. Results: 27 Salmonella Paratyphi B strains were identified, of which the predominant STs were ST42 (11), ST86 (10), and ST2814 (5). Among these strains, we uncovered four concerning XDR Salmonella Paratyphi B ST2814 strains (4/5) which were previously unreported. These alarmingly resistant isolates showed resistance to all three major antibiotic classes for Salmonella treatment and even the last resort treatment tigecycline. Bioinformatics analysis revealed high similarity between the plasmids harbored by these XDR strains and diverse Salmonella serotypes and Escherichia coli from China and neighboring regions. Notably, these four plasmids carried the ramAp gene responsible for multiple antibiotic resistance by regulating the AcrAB-TolC pump, predominantly originating from China. Additionally, a distinct MDR ST42(1/11) strain with an ICE on chromosome was also identified. Furthermore, phylogenetic analysis of global ST42/ST2814 isolates highlighted the regional specificity of these strains, with Jiangsu isolates clustering together with domestic isolates and XDR ST2814 forming a distinct branch, suggesting adaptation to local antibiotic pressures. Conclusions: This research underscores the pressing need for closely monitoring the MDR/XDR Salmonella Paratyphi B, particularly the emerging ST2814 strains in Jiangsu Province, to effectively curb its spread and protect public health. Moreover, surveillance should be strengthened across different ecological niches and genera to track resistance genes and horizontal gene transfer elements under the concept of “ONE HEALTH”.

Funder

Major National Science and Technology Projects

Preventive Medicine Research Project of Jiangsu Province

Publisher

MDPI AG

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3