Silver Nanoparticle-Based Combinations with Antimicrobial Agents against Antimicrobial-Resistant Clinical Isolates

Author:

Alotaibi Areej M.,Alsaleh Nasser B.ORCID,Aljasham Alanoud T.ORCID,Tawfik Essam A.ORCID,Almutairi Mohammed M.,Assiri Mohammed A.ORCID,Alkholief Musaed,Almutairi Mashal M.ORCID

Abstract

The increasing prevalence of antimicrobial-resistant (AMR) bacteria along with the limited development of antimicrobials warrant investigating novel antimicrobial modalities. Emerging inorganic engineered nanomaterials (ENMs), most notably silver nanoparticles (AgNPs), have demonstrated superior antimicrobial properties. However, AgNPs, particularly those of small size, could exert overt toxicity to mammalian cells. This study investigated whether combining AgNPs and conventional antimicrobials would produce a synergistic response and determined the optimal and safe minimum inhibitory concentration (MIC) range against several wild-type Gram-positive and -negative strains and three different clinical isolates of AMR Klebsiella pneumoniae. Furthermore, the cytotoxicity of the synergistic combinations was assessed in a human hepatocyte model. The results showed that the AgNPs (15–25 nm) were effective against Gram-negative bacteria (MIC of 16–128 µg/mL) but not Gram-positive strains (MIC of 256 µg/mL). Both wild-type and AMR K. pneumoniae had similar MIC values following exposure to AgNPs. Importantly, co-exposure to combinations of AgNPs and antimicrobial agents, including kanamycin, colistin, rifampicin, and vancomycin, displayed synergy against both wild-type and AMR K. pneumoniae isolates (except for vancomycin against AMR strain I). Notably, the tested combinations demonstrated no to minimal toxicity against hepatocytes. Altogether, this study indicates the potential of combining AgNPs with conventional antimicrobials to overcome AMR bacteria.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3