Seismic Response of a PC Continuous Box Girder Bridge under Extreme Ambient Temperature

Author:

Wang Li12ORCID,Yu Lusong1,Du Xinlong1,Zhang Xiyin1,Li Ziqi1

Affiliation:

1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Gansu Gonghang Travel Road Industry Co., Ltd., Lanzhou 730030, China

Abstract

To study the effect of temperature on the seismic performance of a prestressed reinforced concrete (PC) continuous girder bridge with laminated rubber bearings (LRBs), a two-linked continuous bridge was used as the background to consider the effect of extreme temperature on the properties of LRBs and pier concrete. First, the properties of concrete specimens were tested at different temperatures to obtain their mechanical parameters at extreme temperatures. Then, we obtained the effect of extreme temperature on the seismic response of consecutive bridges with LRBs by examining the seismic response of the pier moments, pier top displacements, and bearing deformations. The results show that compared with normal temperatures, the extreme temperature causes a change in parameters of the LRBs and concrete pier, which increases the internal force and displacement response of a pier under an extremely low temperature by 37.13% and 32.74%, respectively. The displacement of bearings under extremely high temperature conditions increases by 16.31%. The influence of temperature changes on the mechanical parameters of LRBs will change the connection stiffness of the pier and superstructure, resulting in significant changes in the seismic response of the pier and bearing, so that the internal force and displacement response of the pier are negatively correlated with the temperature.

Funder

National Natural Science Foundation of China

Colleges and universities of Gansu Province

Young Scholars Science Foundation of Lanzhou Jiaotong University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3