Moisture Influence on the Thermal Operation of the Late 19th Century Brick Facade, in a Historic Building in the City of Zamora

Author:

Cabeza-Prieto Alejandro,Camino-Olea María Soledad,Rodríguez-Esteban María AscensiónORCID,Llorente-Álvarez Alfredo,Pérez María Paz SáezORCID

Abstract

To improve the energy performance of restored cultural heritage buildings, it is necessary to know the real values of thermal conductivity of its envelope, mainly of the facades, and to study an intervention strategy that does not interfere with the preservation of their cultural and architectural values. The brick walls with which a large number of these buildings were constructed, usually absorb water, leading to their deterioration, whereas the heat transmission through them is much higher (than when they are dry). This aspect is often not taken into account when making interventions to improve the energy efficiency of these buildings, which makes them ineffective. This article presents the results of an investigation that analyzes thermal behavior buildings of the early 20th century in the city of Zamora, Spain. It has been concluded that avoiding moisture in brick walls not only prevents its deterioration but represents a significant energy saving, especially in buildings that have porous brick masonry walls and with significant thicknesses.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Directiva 2012/27/UE del Parlamento Europeo y del Consejo de 25 de octubre de 2012 relativa a la eficiencia energética, por la que se modifican las Directivas 2009/125/CE y 2010/30/UE, y por la que se derogan las Directivas 2004/8/CE y 2006/32/CEhttps://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:02012L0027-20180709&from=EN

2. Prestazione Energetica delle Architetture Storiche: Sfide e Soluzioni;Calzolari,2016

3. A parametric method to assess the energy performance of historical urban settlements. Evaluation of the current energy performance and simulation of retrofit strategies for an Italian case study

4. Hygrothermal performance evaluation of traditional brick masonry in historic buildings

5. Simulation Research on the Effect of Coupled Heat and Moisture Transfer on the Energy Consumption and Indoor Environment of Public Buildings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3