The Impact of Scale on Extracting Individual Mobility Patterns from Location-Based Social Media

Author:

Bin Asad Khan Mortuza1,Yuan Yihong1

Affiliation:

1. Department of Geography and Environmental Studies, Texas State University, San Marcos, TX 78666, USA

Abstract

Understanding human movement patterns is crucial for comprehending how a city functions. It is also important for city planners and policymakers to create more efficient plans and policies for urban areas. Traditionally, human movement patterns were analyzed using origin–destination surveys, travel diaries, and other methods. Now, these patterns can be identified from various geospatial big data sources, such as mobile phone data, floating car data, and location-based social media (LBSM) data. These extensive datasets primarily identify individual or collective human movement patterns. However, the impact of spatial scale on the analysis of human movement patterns from these large geospatial data sources has not been sufficiently studied. Changes in spatial scale can significantly affect the results when calculating human movement patterns from these data. In this study, we utilized Weibo datasets for three different cities in China including Beijing, Guangzhou, and Shanghai. We aimed to identify the effect of different spatial scales on individual human movement patterns as calculated from LBSM data. For our analysis, we employed two indicators as follows: an external activity space indicator, the radius of gyration (ROG), and an internal activity space indicator, entropy. These indicators were chosen based on previous studies demonstrating their efficiency in analyzing sparse datasets like LBSM data. Additionally, we used two different ranges of spatial scales—10–100 m and 100–3000 m—to illustrate changes in individual activity space at both fine and coarse spatial scales. Our results indicate that although the ROG values show an overall increasing trend and the entropy values show an overall decreasing trend with the increase in spatial scale size, different local factors influence the ROG and entropy values at both finer and coarser scales. These findings will help to comprehend the dynamics of human movement across different scales. Such insights are invaluable for enhancing overall urban mobility and optimizing transportation systems.

Publisher

MDPI AG

Reference75 articles.

1. Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai;Liu;Landsc. Urban Plan,2012

2. Understanding human activity patterns based on space-time-semantics;Huang;ISPRS J. Photogramm. Remote Sens.,2016

3. Xu, Y., Shaw, S.-L., Zhao, Z., Yin, L., Lu, F., Chen, J., Fang, Z., and Li, Q. (2016). Another tale of two cities: Understanding human activity space using actively tracked cellphone location data. Geographies of Mobility, Routledge.

4. Human mobility: Models and applications;Barbosa;Phys. Rep.,2018

5. Space–time density of trajectories: Exploring spatio-temporal patterns in movement data;Virrantaus;Int. J. Geogr. Inf. Sci.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3