Modeling Nutrition Quality and Storage of Forage Using Climate Data and Normalized-Difference Vegetation Index in Alpine Grasslands

Author:

Han Fusong,Fu GangORCID,Yu Chengqun,Wang ShaohuaORCID

Abstract

Quantifying forage nutritional quality and pool at various spatial and temporal scales are major challenges in quantifying global nitrogen and phosphorus cycles, and the carrying capacity of grasslands. In this study, we modeled forage nutrition quality and storage using climate data under fencing conditions, and using climate data and a growing-season maximum normalized-difference vegetation index under grazing conditions based on four different methods (i.e., multiple linear regression, random-forest models, support-vector machines and recursive-regression trees) in the alpine grasslands of Tibet. Our results implied that random-forest models can have greater potential ability in modeling forage nutrition quality and storage than the other three methods. The relative biases between simulated nutritional quality using random-forest models and the observed nutritional quality, and between simulated nutrition storage using random-forest models and the observed nutrition storage, were lower than 2.00% and 6.00%, respectively. The RMSE between simulated nutrition quality using random-forest models and the observed nutrition quality, and between simulated nutrition storage using random-forest models and the observed nutrition storage, were no more than 0.99% and 4.50 g m−2, respectively. Therefore, random-forest models based on climate data and/or the normalized-difference vegetation index can be used to model forage nutrition quality and storage in the alpine grasslands of Tibet.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Responses of forage nutrient quality to grazing in the alpine grassland of Northern Tibet;Fu;Acta Prataculturae Sin.,2021

2. Long-term declines in dietary nutritional quality for North American cattle

3. Effect of long-term experimental warming on the nutritional quality of alpine meadows in the Northern Tibet;Sun;J. Resour. Ecol.,2020

4. Short-term regrowth responses of four steppe grassland species to grazing intensity, water and nitrogen in Inner Mongolia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3