Spatio-Temporal Heterogeneous Impacts of the Drivers of NO2 Pollution in Chinese Cities: Based on Satellite Observation Data

Author:

Cui YuanzhengORCID,Zha Hui,Dang Yunxiao,Qiu Lefeng,He Qingqing,Jiang Lei

Abstract

Rapid urbanization in China has led to an increasing problem of atmospheric nitrogen dioxide (NO2) pollution, which negatively impacts urban ecology and public health. Nitrogen dioxide is an important atmospheric pollutant, and quantitative spatio-temporal analysis and influencing factor analysis of Chinese cities can help improve urban air pollution. In this study, the spatio-temporal analysis methods were used to explore the variations of NO2 pollution in Chinese cities from 2005 to 2020. The findings are as follows. In more than half of Chinese cities, NO2 levels remarkably decreased between 2005 and 2020. The effective NO2 reduction strategies contributed to the significant NO2 reduction during the 13th Five-Year Plan (2016–2020). Moreover, we found that the pandemic of COVID-19 alleviated NO2 pollution in China since it reduced the traffic, industrial, and living activities. The NO2 pollution in Chinese cities was found highly spatially clustered. The geographically and temporally weighted regression model was used to analyze the spatio-temporal heterogeneity of NO2 pollution influencing factors in Chinese cities, including natural meteorological and socio-economic factors. The results showed that the GDPPC, population densities, and ambient air pressure were positively correlated with NO2 pollution. In contrast, the ratio of the tertiary to the secondary industry, temperature, wind speed, and relative humidity negatively impacted the NO2 pollution level. The findings of this research contribute to the improvement of urban air quality, stimulating the achievements of the sustainable development goals of Chinese cities.

Funder

Humanities and Social Science project of Ministry of Education of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3