Topological BF Description of 2D Accelerated Chiral Edge Modes

Author:

Bertolini EricaORCID,Fecit FilippoORCID,Maggiore NicolaORCID

Abstract

In this paper, we consider the topological abelian BF theory with radial boundary on a generic 3D manifold, as we were motivated by the recently discovered accelerated edge modes on certain Hall systems. Our aim was to research if, where, and how the boundary keeps the memory of the details of the background metrics. We discovered that some features were topologically protected and did not depend on the bulk metric. The outcome was that these edge excitations were accelerated, as a direct consequence of the non-flat nature of the bulk spacetime. We found three possibilities for the motion of the edge quasiparticles: same directions, opposite directions, and a single-moving mode. However, requiring that the Hamiltonian of the 2D theory is bounded by below, the case of the edge modes moving in the same direction was ruled out. Systems involving parallel Hall currents (for instance, a fractional quantum Hall effect with ν=2/5) cannot be described by a BF theory with the boundary, independently from the geometry of the bulk spacetime, because of positive energy considerations. Thus, we were left with physical situations characterized by edge excitations moving with opposite velocities (for example, the fractional quantum Hall effect with ν=1−1/n, with the n positive integer, and the helical Luttinger liquids phenomena) or a single-moving mode (quantum anomalous Hall). A strong restriction was obtained by requiring time reversal symmetry, which uniquely identifies modes with equal and opposite velocities, and we know that this is the case of topological insulators. The novelty, with respect to the flat bulk background, is that the modes have local velocities, which correspond to topological insulators with accelerated edge modes.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3