Unveiling Drought-Resilient Latin American Popcorn Lines through Agronomic and Physiological Evaluation

Author:

de Oliveira Uéliton Alves1,do Amaral Junior Antônio Teixeira1ORCID,Leite Jhean Torres1ORCID,Kamphorst Samuel Henrique1ORCID,de Lima Valter Jário1ORCID,Bispo Rosimeire Barboza1,Ribeiro Rodrigo Moreira1ORCID,Viana Flávia Nicácio1ORCID,Lamego Danielle Leal1,Carvalho Carolina Macedo1,Simão Bruna Rohem1,de Oliveira Santos Talles1ORCID,Gonçalves Gabriella Rodrigues1,Campostrini Eliemar1ORCID

Affiliation:

1. Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, RJ, Brazil

Abstract

Water stress can lead to physiological and morphological damage, affecting the growth and development of popcorn. The objective of this study was to identify the yield potential of 43 popcorn lines derived from a Latin American germplasm collection, based on agronomic and physiological traits, under full irrigation (WW) and water deficit conditions (WS), aiming to select superior germplasm. The evaluated agronomic traits included the ear length and diameter, number of grains per row (NGR) and rows per ear (NRE), grain yield (GY), popping expansion (EC), volume of expanded popcorn per hectare (VP), grain length (GL), width, and thickness. The physiological traits included the chlorophyll, anthocyanin, and flavonoid content in the leaves. The genetic variability and distinct behavior among the lines for all the agronomic traits under WW and WS conditions were observed. When comparing the water conditions, line L292 had the highest mean for the GY, and line L688 had the highest mean for the EC, highlighting them as the most drought-tolerant lines. A water deficit reduced the leaf greenness but increased the anthocyanin content as an adaptive response. The GY trait showed positive correlations with the VP, NGR, and GL under both water conditions, making the latter useful for indirect selection and thus of great interest for plant breeding targeting the simultaneous improvement of these traits.

Funder

Coordination of Superior Level Staff Improvement

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3