Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO2 Catalysts for Renewable Diesel Production

Author:

Petropoulos George1,Zafeiropoulos John1,Kordouli Eleana12ORCID,Lycourghiotis Alexis12,Kordulis Christos23ORCID,Bourikas Kyriakos1ORCID

Affiliation:

1. School of Science and Technology, Hellenic Open University, Parodos Aristotelous 18, 26335 Patras, Greece

2. Department of Chemistry, University of Patras, 26504 Patras, Greece

3. Foundation of Research and Technology, Institute of Chemical Engineering Science (FORTH/ICE-HT) Stadiou Str. Platani, 26500 Patras, Greece

Abstract

The efficiency of Ni/TiO2 catalysts for renewable diesel production was evaluated in the present study. Two series of catalysts were synthesized and characterized using various physicochemical techniques (N2 physisorption, XRD, SEM, XPS, H2-TPR, and NH3–TPD). In the first series of catalysts, successive dry impregnations (SDI) were used for depositing 10, 20, 30, 50, and 60 wt.% Ni. The yield towards renewable diesel is maximized over the catalyst with 50 wt.% Ni loading. Selecting this optimum loading, a second series of catalysts were synthesized via three additional preparation methods: wet impregnation (WI) and deposition–precipitation using either ammonia (DP-NH3) or urea (DP-Urea) as the precipitation agent. The catalysts’ efficiency in the production of green diesel is influenced by the preparation method following the order: DP-Urea > DP-NH3 > WI ≈ SDI. The metallic surface area and the balanced acidity mainly determine the performance of the catalysts.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3