Segmentary Damage Constitutive Model and Evolution Law of Rock under Water-Force Coupling Action of Pumped Storage in Deep Mine

Author:

Luo Ji’an1,Wang Liangliang2

Affiliation:

1. School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China

2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

Abstract

The deformation and failure of surrounding rock mass under different water environments is a basic mechanical problem encountered in the safe operation of ground pumped storage power station and abandoned mine pumped storage power station. According to the influence of different water environments on the failure characteristics of deep surrounding rock mass, it is necessary to summarize the damage evolution law of deep rock mass under different water environments and construct the constitutive model. In this paper, the loading mechanical test is carried out after the natural immersion of the rock in different water environments. The influence of the change of the geological water environment on the damage evolution characteristics of the rock is analyzed from the perspective of the deterioration of the mechanical parameters. On this basis, the damage statistical constitutive model is constructed, and the damage evolution analysis is carried out. The results show that the degradation degree of mechanical parameters such as compressive strength and elastic modulus of sandstone is in the order of distilled water immersion, simulated groundwater immersion and natural state. The damage evolution of sandstone under water–rock interaction is divided into four stages: no damage, rapid damage, deceleration damage and failure. The theoretical curve of the model is in good agreement with the uniaxial test curve of rock under different water environments. The segmented damage constitutive model based on the long compaction stage of sandstone under water–rock interaction reasonably reflects the change of stress–strain relationship of damage failure, and the physical meaning of parameters is clear.

Funder

Natural Science Research Project of Anhui Educational Committee

Quality Engineering Project of Anhui Provincial Department of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference24 articles.

1. Day-ahead Optimal Dispatch of Thermal/Storage/Load Considering Variable Time Period Control in Power System with High Penetration New Energy;Li;Power Syst. Technol.,2022

2. Analytical Method for Estimating Leakage of Reservoir Basins for Pumped Storage Power Stations;Yang;Bull. Eng. Geol. Environ.,2021

3. Liu, K.Z., He, J., Luo, Z., Shan, H., Li, C.L., Mei, R., Yan, Q.C., Wang, X.J., and Wei, L. (2020). Load Frequency Control of Pumped Storage Power Station Based On LADRC. Processes, 8.

4. Comprehensive Development and Utilization of Abandoned Mine Resources Helping to achieve the “carbon peak, carbon neutral” target;Yuan;Sci. Technol. Rev.,2021

5. Research status and progress of geothermal energy development and utilization from closed/abandoned coal mines;Pu;J. China Coal Soc.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3