Sizing Design for a Hybrid Renewable Power System Using HOMER and iHOGA Simulators

Author:

Hoarcă Ioan Cristian1,Bizon Nicu123ORCID,Șorlei Ioan Sorin13,Thounthong Phatiphat45ORCID

Affiliation:

1. ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania

2. Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania

3. Doctoral School, University Politehnica of Bucharest, Splaiul Independentei Street No. 313, 060042 Bucharest, Romania

4. Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand

5. Group of Research in Electrical Engineering of Nancy (GREEN), University of Lorraine-GREEN, F-54000 Nancy, France

Abstract

In this study, a comparative sizing design for renewable power systems was developed based on HOMER (Hybrid Optimization of Multiple Energy Resources) and iHOGA (improved Hybrid Optimization by Genetic Algorithms) simulators. A comparative analysis of the solutions obtained with iHOGA and HOMER simulators for the same hybrid renewable power system (HRPS) is presented in detail. The system contained a new hybrid configuration that used fuel cell (FC) as a green energy source, replacing the polluting diesel generator system, as well as other renewable energy sources, namely, photovoltaic panels, wind turbine, a battery stack, power converters, and electric load. The same case study was carried out for the design of the hybrid system using HOMER and iHOGA simulators to perform a comparative analysis of the solutions obtained for potential investment. The analysis showed a higher share of renewable energy for iHOGA (92%) compared to HOMER (81%), so the first design produced 51.61 kg/year less carbon dioxide. Moreover, the operating costs (2134 RON/year for HOMER and 70.56 RON/year for iHOGA) and the cost of electricity were higher by 96% and 2.5%, respectively, for HOMER compared to iHOGA. Taking into account the need for high reliability, safe operation, and lower operation/exploitation costs, the design implemented in iHOGA is clearly more efficient and useful in practice, and this is supported by the three iHOGA case studies.

Funder

Framework Agreement between the University of Pitesti (Romania) and King Mongkut’s University of Technology North Bangkok

International Research Partnership “Electrical Engineering—Thai French Research Center (EE-TFRC)”

National Research Council of Thailand

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3