Abstract
Cervical tissue hydration level is one of the most important parameters to monitor in the early diagnosis of preterm birth. Electrical-impedance-spectroscopy-based techniques are often used, but they suffer from limited accuracy. Open microwave coaxial probes have been widely used as a broadband dielectric characterization technique for human tissue samples due to their versatility, but with limited accuracy due to their nonresonant nature. In this work, a resonant microwave open coaxial probe with multiple harmonic resonances is proposed as a sensing platform for tissue-hydration-level monitoring. The mechanical design was analyzed and verified by finite-element full 3D electromagnetic simulation and experiments. Dominant sources of errors and the ways to mitigate them were discussed. In vitro experiments were carried out on human cervix samples to verify the precision and accuracy by comparing the results to a commercial skin-hydration sensor. The proposed sensor shows mean fractional frequency shift of (3.3 ± 0.3) × 10−4 per unit % over the entire data. This translates into an absolute frequency shift (ΔfN) of 252 ± 23 kHz/%, 455 ± 41 kHz/%, and 647 ± 57 kHz/% at second, fourth, and sixth harmonic resonance, respectively.
Funder
University of Sheffield Medical Research Council Confidence
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference61 articles.
1. World Health Organization (2022, May 18). Preterm Birth. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth.
2. World Health Organization (2010). Systematic review on maternal mortality and morbidity: The global burden of preterm birth. Bull World Health Organ., 88, 31–38.
3. Centers for Disease Control and Prevention (2022, May 18). Preterm Birth, Available online: https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm.
4. Cervical length for predicting preterm birth and a comparison of ultrasonic measurement techniques;Zelesco;Australas. J. Ultrasound Med.,2013
5. Beyond cervical length: Emerging technologies for assessing the pregnant cervix;Feltovich;Am. J. Obstet. Gynecol.,2012