An Energy Management Strategy for Hybrid Energy Storage System Based on Reinforcement Learning

Author:

Wang Yujie12ORCID,Li Wenhuan1,Liu Zeyan1,Li Ling1

Affiliation:

1. School of Information Science & Technology, University of Science and Technology of China, Hefei 230027, China

2. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230027, China

Abstract

Due to the continuous high traction power impact on the energy storage medium, it is easy to cause many safety risks during the driving process, such as triggering the aging mechanism, causing rapid deterioration of the battery performance during the driving process and even triggering thermal runaway. Hybrid energy storage is an effective way to solve this problem. The ultracapacitor is an energy storage device that has high power density, which can withstand high instantaneous currents and can be charged and discharged quickly. By combining batteries and ultracapacitors in a hybrid energy storage system, energy sources with different characteristics can be combined to take advantage of their respective strengths and increase the efficiency and lifetime of the system. The energy management strategy plays an important role in the performance of hybrid energy storage systems. Traditional optimization algorithms have difficulty improving the flexibility and practicality of applications. In this paper, an energy management strategy based on reinforcement learning is proposed. The results indicate that the proposed reinforcement method can effectively distribute the charging and discharging conditions of the power supply and maintain the SOC of the battery and, at the same time, meet the power demand of working conditions at the cost of less energy loss and effectively realize the goal of optimizing the overall efficiency and effective energy management strategy.

Funder

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3