Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines

Author:

Wei Na,Sun Wantong,Meng Yingfeng,Zhao Jinzhou,Kvamme Bjørn,Zhou Shouwei,Zhang Liehui,Li Qingping,Zhang Yao,Jiang Lin,Li Haitao,Pei Jun

Abstract

In recent years, the exploitation and utilization of offshore oil and gas resources have attracted more attention. In offshore gas reservoir production, wellbore temperature and pressure change continuously when water-bearing natural gas flows upward. The wellbore temperature is also affected by the low-temperature sea water. The combination of temperatures and pressures controlled by the upward flow, and cooling from the surrounding seawater frequently leads to the conditions of temperature and pressure for hydrate formation. This can lead to pipeline blockage and other safety accidents. In this study, we utilize mathematical models of hydrate phase equilibrium, wellbore temperature, wellbore pressure to study hydrate formation and decomposition in offshore gas reservoir production. Numerical solution algorithms are developed and numerical solutions are validated. The sensitivity influence of different parameters on the regions and regularities of hydrate formation and decomposition in wellbores are obtained through numerical simulations. It is found that increased daily gas production, water content, or geothermal gradient in offshore gas reservoir production pipelines results in less hydrate formation in the wellbores. Accordingly, the risk of wellbore blockage decreases and production safety is maintained. Decreased tubing head pressure or seawater depth results in similar effects. The result of this study establishes a set of prediction methods for hydrate formation and decomposition that can be used in the development of guidelines for safe construction design.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3