A Remote Sensing and Machine Learning-Based Approach to Forecast the Onset of Harmful Algal Bloom

Author:

Izadi MoeinORCID,Sultan Mohamed,Kadiri Racha El,Ghannadi AminORCID,Abdelmohsen KaremORCID

Abstract

In the last few decades, harmful algal blooms (HABs, also known as “red tides”) have become one of the most detrimental natural phenomena in Florida’s coastal areas. Karenia brevis produces toxins that have harmful effects on humans, fisheries, and ecosystems. In this study, we developed and compared the efficiency of state-of-the-art machine learning models (e.g., XGBoost, Random Forest, and Support Vector Machine) in predicting the occurrence of HABs. In the proposed models the K. brevis abundance is used as the target, and 10 level-02 ocean color products extracted from daily archival MODIS satellite data are used as controlling factors. The adopted approach addresses two main shortcomings of earlier models: (1) the paucity of satellite data due to cloudy scenes and (2) the lag time between the period at which a variable reaches its highest correlation with the target and the time the bloom occurs. Eleven spatio-temporal models were generated, each from 3 consecutive day satellite datasets, with a forecasting span from 1 to 11 days. The 3-day models addressed the potential variations in lag time for some of the temporal variables. One or more of the generated 11 models could be used to predict HAB occurrences depending on availability of the cloud-free consecutive days. Findings indicate that XGBoost outperformed the other methods, and the forecasting models of 5–9 days achieved the best results. The most reliable model can forecast eight days ahead of time with balanced overall accuracy, Kappa coefficient, F-Score, and AUC of 96%, 0.93, 0.97, and 0.98 respectively. The euphotic depth, sea surface temperature, and chlorophyll-a are always among the most significant controlling factors. The proposed models could potentially be used to develop an “early warning system” for HABs in southwest Florida.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3