Hyperspectral Image Denoising via Framelet Transformation Based Three-Modal Tensor Nuclear Norm

Author:

Kong WenfengORCID,Song Yangyang,Liu Jing

Abstract

During the acquisition process, hyperspectral images (HSIs) are inevitably contaminated by mixed noise, which seriously affects the image quality. To improve the image quality, HSI denoising is a critical preprocessing step. In HSI denoising tasks, the method based on low-rank prior has achieved satisfying results. Among numerous denoising methods, the tensor nuclear norm (TNN), based on the tensor singular value decomposition (t-SVD), is employed to describe the low-rank prior approximately. Its calculation can be sped up by the fast Fourier transform (FFT). However, TNN is computed by the Fourier transform, which lacks the function of locating frequency. Besides, it only describes the low-rankness of the spectral correlations and ignores the spatial dimensions’ information. In this paper, to overcome the above deficiencies, we use the basis redundancy of the framelet and the low-rank characteristics of HSI in three modes. We propose the framelet-based tensor fibered rank as a new representation of the tensor rank, and the framelet-based three-modal tensor nuclear norm (F-3MTNN) as its convex relaxation. Meanwhile, the F-3MTNN is the new regularization of the denoising model. It can explore the low-rank characteristics of HSI along three modes that are more flexible and comprehensive. Moreover, we design an efficient algorithm via the alternating direction method of multipliers (ADMM). Finally, the numerical results of several experiments have shown the superior denoising performance of the proposed F-3MTNN model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3