First-Principle Studies on Local Lattice Distortions and Thermodynamic Properties in Non-Stoichiometric Thorium Monocarbide

Author:

Wei Qianglin123ORCID,Zhu Lin2,Wu Yiyuan13,Liu Yibao12,Wang Baotian456ORCID

Affiliation:

1. Engineering Research Center of Nuclear Technology Application, Ministry of Education (East China Institute of Technology), Nanchang 330013, China

2. School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China

3. Engineering Technology Research Center of Nuclear Radiation Detection and Application, Nanchang 330013, China

4. Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China

5. Spallation Neutron Source Science Center, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Dongguan 523803, China

6. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

Abstract

Thorium monocarbide (ThC) is interesting as an alternative fertile material to be used in nuclear breeder systems and thorium molten salt reactors because of its high thermal conductivity, good irradiation performance, and wide homogeneous composition range. Here, the influence of carbon vacancy site and concentration on lattice distortions in non-stoichiometric ThC1−x (x = 0, 0.03125, 0.0625, 0.125, 0.1875, 0.25, or 0.3125) is systematically investigated using first-principle calculations by the projector augmented wave (PAW) method. The energy, mechanical parameters, and thermodynamic properties of the ThC1-x system are calculated. The results show that vacancy disordering has little influence on the total energy of the system at a constant carbon vacancy concentration using the random substitution method. As the concentration of carbon vacancies increases, significant lattice distortion occurs, leading to poor structural stability in ThC1−x systems. The changes in lattice constant and volume indicate that ThC0.75 and ThC0.96875 represent the boundaries between two-phase and single-phase regions, which is consistent with our experiments. Furthermore, the structural phase of ThC1−x (x = 0.25–0.3125) transforms from a cubic to a tetragonal structure due to its ‘over-deficient’ composition. In addition, the elastic moduli, Poisson’s ratio, Zener anisotropic factor, and Debye temperature of ThC1-x approximately exhibit a linear downward trend as x increases. The thermal expansion coefficient of ThC1−x (x = 0–0.3125) exhibits an obvious ‘size effect’ and follows the same trend at high temperatures, except for x = 0.03125. Heat capacity and Helmholtz free energy were also calculated using the Debye model; the results showed the C vacancy defect has the greatest influence on non-stoichiometric ThC1−x. Our results can serve as a theoretical basis for studying the radiation damage behavior of ThC and other thorium-based nuclear fuels in reactors.

Funder

National Natural Science Foundation of China

Engineering Research Center of Nuclear Technology Application, Ministry of Education

Doctoral Project of East China University of Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3