Naphthalene Monoimides with Peri-Annulated Disulfide Bridge—Synthesis and Electrochemical Redox Activity

Author:

Mutovska Monika1,Simeonova Natali1,Stoyanov Stanimir1ORCID,Zagranyarski Yulian1ORCID,Stanchovska Silva2,Marinova Delyana2ORCID

Affiliation:

1. Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria

2. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Abstract

Nowadays, organosulfur compounds provide new options in the development of full organic ion batteries. However, many drawbacks (such as kinetics limitations during the reversible oxidation of disulfides with cleavage of S–S bond, as well as solubility in non-aqueous electrolytes) make their commercialization difficult. Herein, a new concept for the design of organosulfur compounds with regulated redox properties and limited solubility is proposed. As a proof-of-concept, we designed peri-disulfo-substituted 1,8-naphthalimide derivatives, in which the alkyl chain length and halogen substituents (Cl or Br) at positions 3 and 6 are varied. The compounds were synthesized by an originally developed procedure starting from tetrahalonaphthalic anhydride via nucleophilic substitution at both peri-positions in the respective imide. Using ionic liquid electrolyte, it was found that the new peri-dithiolo-1,8-naphthalimides can participate in n- and p-type redox reactions at about 2.0 V and above 4.0 V vs. Li/Li+, respectively. The redox potentials are sensitive mainly to whether Cl or Br substituents are available in the molecule architecture, while the alkyl chain length determines the kinetics of the redox reactions. Among all compounds, the chloro-substituted compound with the shorter alkyl chain displays the best kinetics for both low- and high-voltage redox reactions.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3