Growth-Restricted Fetuses and Offspring Reveal Adverse Sex-Specific Metabolic Responses in Preeclamptic Mice Expressing Human sFLT1

Author:

Vogtmann Rebekka1,Bao Mian2ORCID,Dewan Monia Vanessa3,Riedel Alina1,Kimmig Rainer1,Felderhoff-Müser Ursula3,Bendix Ivo3ORCID,Plösch Torsten24,Gellhaus Alexandra1ORCID

Affiliation:

1. Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany

2. Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands

3. Department of Pediatrics I, Neonatology & Experimental perinatal Neurosciences, University Hospital Essen, Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, 45147 Essen, Germany

4. Perinatal Neurobiology Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany

Abstract

Fetal adaptations to harmful intrauterine environments due to pregnancy disorders such as preeclampsia (PE) can negatively program the offspring’s metabolism, resulting in long-term metabolic changes. PE is characterized by increased circulating levels of sFLT1, placental dysfunction and fetal growth restriction (FGR). Here we examine the consequences of systemic human sFLT1 overexpression in transgenic PE/FGR mice on the offspring’s metabolic phenotype. Histological and molecular analyses of fetal and offspring livers as well as examinations of offspring serum hormones were performed. At 18.5 dpc, sFLT1 overexpression resulted in growth-restricted fetuses with a reduced liver weight, combined with reduced hepatic glycogen storage and histological signs of hemorrhages and hepatocyte apoptosis. This was further associated with altered gene expression of the molecules involved in fatty acid and glucose/glycogen metabolism. In most analyzed features males were more affected than females. The postnatal follow-up revealed an increased weight gain of male PE offspring, and increased serum levels of Insulin and Leptin. This was associated with changes in hepatic gene expression regulating fatty acid and glucose metabolism in male PE offspring. To conclude, our results indicate that sFLT1-related PE/FGR in mice leads to altered fetal liver development, which might result in an adverse metabolic pre-programming of the offspring, specifically targeting males. This could be linked to the known sex differences seen in PE pregnancies in human.

Funder

Mercator Research Centre Ruhr

Programm zur internen Forschungsförderung Essen

German Research Foundation

Open Access Publication Fund of the University of Duisburg-Essen

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3