Ferroptosis-Related Molecular Clusters and Diagnostic Model in Rheumatoid Arthritis

Author:

Xie Maosheng1,Zhu Chao1,Ye Yujin1

Affiliation:

1. Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovitis, joint damage and deformity. A newly described type of cell death, ferroptosis, has an important role in the pathogenesis of RA. However, the heterogeneity of ferroptosis and its association with the immune microenvironment in RA remain unknown. Synovial tissue samples from 154 RA patients and 32 healthy controls (HCs) were obtained from the Gene Expression Omnibus database. Twelve of twenty-six ferroptosis-related genes (FRGs) were differentially expressed between RA patients and HCs. Furthermore, the patterns of correlation among the FRGs were significantly different between the RA and HC groups. RA patients were classified into two distinct ferroptosis-related clusters, of which cluster 1 had a higher abundance of activated immune cells and a corresponding lower ferroptosis score. Enrichment analysis suggested that tumor necrosis factor-α signaling via nuclear factor-κB was upregulated in cluster 1. RA patients in cluster 1 responded better to anti-tumor necrosis factor (anti-TNF) therapy, which was verified by the GSE 198520 dataset. A diagnostic model to identify RA subtypes and immunity was constructed and verified, in which the area under the curve values in the training (70%) and validation (30%) cohorts were 0.849 and 0.810, respectively. This study demonstrated that there were two ferroptosis clusters in RA synovium that exhibited distinct immune profiles and ferroptosis sensitivity. Additionally, a gene scoring system was constructed to classify individual RA patients.

Funder

the Science and Technology Planning Project of Guangzhou

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. Rheumatoid Arthritis;Sparks;Ann. Intern. Med.,2019

2. Rheumatoid arthritis;Smolen;Nat. Rev. Dis. Prim.,2018

3. Bo, M., Jasemi, S., Uras, G., Erre, G.L., Passiu, G., and Sechi, L.A. (2020). Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms, 8.

4. Interferon regulatory factor 5 is a potential target of autoimmune response triggered by Epstein-barr virus and Mycobacterium avium subsp. paratuberculosis in rheumatoid arthritis: Investigating a mechanism of molecular mimicry;Bo;Clin. Exp. Rheumatol.,2018

5. Antibody response to homologous epitopes of Epstein-Barr virus, Mycobacterium avium subsp. paratuberculosis and IRF5 in patients with different connective tissue diseases and in mouse model of antigen-induced arthritis;Bo;J. Transl. Autoimmun.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3