Magnetic Field Effect in Bimolecular Rate Constant of Radical Recombination

Author:

Doktorov Alexander B.12ORCID,Lukzen Nikita N.13ORCID

Affiliation:

1. International Tomography Center SB RAS, 630090 Novosibirsk, Russia

2. Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090 Novosibirsk, Russia

3. Physics Faculty, Novosibirsk State University, 630090 Novosibirsk, Russia

Abstract

The influence of magnetic fields on chemical reactions, including biological ones, has been and still is a topical subject in the field of scientific research. Experimentally discovered and theoretically substantiated magnetic and spin effects in chemical radical reactions form the basis of research in the field of spin chemistry. In the present work, the effect of a magnetic field on the rate constant of the bimolecular spin-selective recombination of radicals in the bulk of a solution is considered theoretically for the first time, taking into account the hyperfine interaction of radical spins with their magnetic nuclei. In addition, the paramagnetic relaxation of unpaired spins of the radicals and the non-equality of their g-factors that also influence the recombination process are taken into account. It is found that the reaction rate constant can vary in magnetic field from a few to half a dozen percent, depending on the relative diffusion coefficient of radicals, which is determined by the solution viscosity. It is shown that the consideration of hyperfine interactions gives rise to the presence of resonances in the dependence of the rate constant on the magnetic field. The magnitudes of the magnetic fields of these resonances are determined by the hyperfine coupling constants and difference in the g-factors of the recombining radicals. Analytical expressions for the reaction rate constant of the bulk recombination for magnetic fields larger than hfi (hyperfine interaction) constants are obtained. In general, it is shown for the first time that accounting for hyperfine interactions of radical spins with magnetic nuclei significantly affects the dependence of the reaction rate constant of the bulk radical recombination on the magnetic field.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference73 articles.

1. Salikhov, K.M., Molin, Y.N., Sagdeev, R., and Buchachenko, A. (1984). Spin Polarization and Magnetic Effects in Radical Reactions, Elsevier Science.

2. Magnetic field effects in chemical kinetics and related phenomena;Steiner;Chem. Rev.,1989

3. Nagakura, S., Hayashi, H., and Azumi, T. (1998). Dynamic Spin Chemistry: Magnetic Controls and Spin Dynamics of Chemical Reactions, Kodansha-Wiley.

4. Magnetic Effects in Chemical Reactions;Buchachenko;Russ. Chem. Rev.,1976

5. Free Radical Lipid Peroxidation: Mechanisms and Analysis;Yin;Chem. Rev.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3