Radiative Effects in Low-Dimensional Effective Fermion Field Theory with Compactification

Author:

Zhukovsky Vladimir Ch.1

Affiliation:

1. Faculty of Physics, Department of Theoretical Physics, Moscow State University, 119899 Moscow, Russia

Abstract

The introduction of branes immersed in the space-times of higher dimensions revealed itself to be a useful instrument for the study of high-dimensional models in quantum field theory. Moreover, low-dimensional quantum field theories represent an especially interesting class of models in physics due to their unique properties and renormalizability when interactions are treated perturbatively. The advantages of both approaches can be combined in a model for a low-dimensional brane immersed in the usual tetradimensional Minkowski space-time, the properties of which are relatively well known. This approach can be used for the study of systems like graphene and carbon nanotubes. In the present work, we present an effective model for nanotubes based on the Lagrangian obtained from a tight-binding model for graphene. The induced current, appearing azimuthally in the presence of a magnetic flux through the tube section (Aharonov–Bohm effect), will be derived. A reduced Lagragian for photons confined on the tube surface, obtained from the literature, is included in the last part of the work to threat perturbative corrections to the induced current.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3