Contribution of Climate Change and Grazing on Carbon Dynamics in Central Asian Pasturelands

Author:

Li Chaofan,Han Qifei,Xu WenqiangORCID

Abstract

Reducing the uncertainties in carbon balance assessment is essential for better pastureland management in arid areas. Climate forcing data are some of the major uncertainty sources. In this study, a modified Biome-BGC grazing model was driven by an ensemble of reanalysis data of the Climate Forecast System Reanalysis data (CFSR), the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), and the Modern-Era Retrospective Analysis for Research and Applications (MERRA), to study the effect of climate change and grazing on the net ecosystem exchange (NEE) of the pasturelands in Central Asia. Afterwards, we evaluated the performance of corresponding climate datasets over four major pastureland types, and quantified the modeling uncertainty induced by climate forcing data. Our results suggest that (1) a significant positive trend in temperature and a negative trend in precipitation were obtained from the three climate datasets. The average precipitation is apparently higher in the CFSR and MERRA data, showing the highest temperature value among the data sets; (2) pasturelands in Central Asia released 2.10 ± 1.60 Pg C in the past 36 years. The highest values were obtained with the CFSR (−1.53 Pg C) and the lowest with the MERRA (−2.35 Pg C) data set; (3) without grazing effects, pasturelands in Central Asia assimilated 0.13 ± 0.06 Pg C from 1981–2014. Grazing activities dominated carbon release (100%), whereas climate changes dominated carbon assimilation (offset 6.22% of all the carbon release). This study offered possible implications to the policy makers and local herdsmen of sustainable management of pastureland and the adaptation of climate change in Central Asia.

Funder

State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3