Possibility of a Portable Power Generator Using Dielectric Elastomers and a Charging System for Secondary Batteries

Author:

Chiba SeikiORCID,Waki Mikio

Abstract

Energy generation using dielectric elastomers (DE) has received a great deal of attention due to their light weight, low cost, and high efficiency. This method is an environmentally friendly system that generates electricity without emitting carbon dioxide and without using rare earths, and can contribute to the reduction of global warming. However, this DE system is expected to be used for wearables, such as shoe power generation, because it is not yet possible to make an energy generation element of a very large size. The problem is that this small DE generator can only generate a small amount of energy at one time. Therefore, in order to increase energy generation efficiency, it is necessary to use a material with higher conductivity for the DE electrode. Moreover, since DE energy generation is output at a high voltage, a circuit capable of stepping down with high efficiency is required in order to use this power for ordinary electric appliances. In addition to this, a circuit that can charge the secondary battery with high efficiency from the surplus power obtained by energy generation is also required. However, these are still technically difficult and have hardly been studied so far. We identified a highly efficient step-down circuit using two diaphragm-type DEs with a diameter of 8 cm, dropped 3000 V to 3.3 V, and succeeded in charging the secondary battery. The possibility of wearable or portable energy generation was shown in a commercial manner.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference53 articles.

1. Polymer electrolyte actuator with gold electrodes;Oguro;Proceedings of the SPIE’s 6th Annual International Symposium on Smart Structures and Materials,1999

2. Soft and Wet Conducting Polymers for Artificial Muscles

3. A polymer gel with electrically driven motility

4. Applying IPMC to soft robots

5. High-field defomation of elasomeric dielectrics for actuators;Pelrine;Proceedings of the 6th SPIE Symposium on Smart Structure and Materials,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3