Coupling Chemical Heat Pump with Nuclear Reactor for Temperature Amplification by Delivering Process Heat and Electricity: A Techno-Economic Analysis

Author:

Gupta Aman,Sabharwall Piyush,Armatis Paul,Fronk Brian,Utgikar VivekORCID

Abstract

The energy economy is continually evolving in response to socio-political factors in the nature of primary energy sources, their conversions to useful forms, such as electricity and heat, and their utilization in different sectors. Nuclear energy has a crucial role to play in the evolution of energy economy due to its clean and non-carbon-emitting characteristics. A techno-economic analysis was undertaken to establish the viability of selling heat along with electricity for an advanced 100 MWth small modular reactor (SMR) and four nuclear hybrid energy system (NHES) configurations featuring the SMR paired with chemical heat pump (ChHP) systems providing a thermal output ranging from 1 to 50 MWth. Net present value, payback period, discounted cash flow rate of return, and levelized cost of energy were evaluated for these systems for different regions of U.S. reflecting a range of electricity and thermal energy costs. The analysis indicated that selling heat to high temperature industrial processes showed profitable outcomes compared to the sale of only electricity. Higher carbon taxes improved the economic parameters of the NHES alternatives significantly. Providing heat to high temperature industries could be very beneficial, helping to cut down the greenhouse gases emission by reducing the fossil fuel consumption.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3