Abstract
Based on the model of irreversible single resonance energy-selective electron heat engine established in the previous literature, this paper applies finite-time thermodynamic theory and NSGA-II algorithm to perform multi-objective optimization. Single-, bi-, tri- and quadru-objective optimizations are performed when the energy boundary and the resonance width are taken as the optimization variables, and the power output, thermal efficiency, efficient power and ecological function are taken as the optimization objectives. The deviation indexes of different optimization objective combinations are obtained by using LINMAP, TOPSIS and Shannon entropy approaches. The results show that the values of energy boundary and resonance width can be reasonably selected according to the design requirements of the system. When power output and efficiency are optimized, the minimal deviation index is obtained by TOPSIS approach and the value is 0.0748, which is the most ideal design scheme.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference58 articles.
1. Finite-Time Thermodynamics;Andresen,1983
2. Endoreversible thermodynamics;Hoffmann;J. Non-Equilib. Thermodyn.,1997
3. Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems
4. Current Trends in Finite‐Time Thermodynamics
5. Complexity and Complex Chemo-Electric Systems;Sieniutycz,2021
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献