Genome-Wide Association Studies in Sunflower: Towards Sclerotinia sclerotiorum and Diaporthe/Phomopsis Resistance Breeding

Author:

Filippi Carla Valeria,Corro Molas Andres,Dominguez MatiasORCID,Colombo DenisORCID,Heinz Nicolas,Troglia Carolina,Maringolo Carla,Quiroz Facundo,Alvarez Daniel,Lia Veronica,Paniego Norma

Abstract

Diseases caused by necrotrophic fungi, such as the cosmopolitan Sclerotinia sclerotiorum and the Diaporthe/Phomopsis complex, are among the most destructive diseases of sunflower worldwide. The lack of complete resistance combined with the inefficiency of chemical control makes assisted breeding the best strategy for disease control. In this work, we present an integrated genome-wide association (GWA) study investigating the response of a diverse panel of sunflower inbred lines to both pathogens. Phenotypic data for Sclerotinia head rot (SHR) consisted of five disease descriptors (disease incidence, DI; disease severity, DS; area under the disease progress curve for DI, AUDPCI, and DS, AUDPCS; and incubation period, IP). Two disease descriptors (DI and DS) were evaluated for two manifestations of Diaporthe/Phomopsis: Phomopsis stem canker (PSC) and Phomopsis head rot (PHR). In addition, a principal component (PC) analysis was used to derive transformed phenotypes as inputs to a univariate GWA (PC-GWA). Genotypic data comprised a panel of 4269 single nucleotide polymorphisms (SNP), generated via genotyping-by-sequencing. The GWA analysis revealed 24 unique marker–trait associations for SHR, 19 unique marker–trait associations for Diaporthe/Phomopsis diseases, and 7 markers associated with PC1 and PC2. No common markers were found for the response to the two pathogens. Nevertheless, epistatic interactions were identified between markers significantly associated with the response to S. sclerotiorum and Diaporthe/Phomopsis. This suggests that, while the main determinants of resistance may differ for the two pathogens, there could be an underlying common genetic basis. The exploration of regions physically close to the associated markers yielded 364 genes, of which 19 were predicted as putative disease resistance genes. This work presents the first simultaneous evaluation of two manifestations of Diaporthe/Phomopsis in sunflower, and undertakes a comprehensive GWA study by integrating PSC, PHR, and SHR data. The multiple regions identified, and their exploration to identify candidate genes, contribute not only to the understanding of the genetic basis of resistance, but also to the development of tools for assisted breeding.

Funder

the Ministry of Science, Technology and Innovation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference78 articles.

1. (2022, August 01). USDA Oilseeds: World Markets and Trade, Available online: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf.

2. Schneiter, A.A. (1997). Sunflower Technology and Production, Soil Science Society of America. Agronomy Monographs.

3. Comprehensive disease survey of U.S. sunflower: Disease trends, research priorities and unanticipated impacts;Gulya;Plant Dis.,2019

4. Sclerotinia and Phomopsis—Two devastating sunflower pathogens;Masirevic;Field Crops Res.,1992

5. Index of plant hosts of Sclerotinia sclerotiorum;Boland;Can. J. Plant Pathol.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3